6 research outputs found

    An analysis of intestinal morphology and incretin-producing cells using tissue optical clearing and 3-D imaging

    Get PDF
    Tissue optical clearing permits detailed evaluation of organ three-dimensional (3-D) structure as well as that of individual cells by tissue staining and autofluorescence. In this study, we evaluated intestinal morphology, intestinal epithelial cells (IECs), and enteroendocrine cells, such as incretin-producing cells, in reporter mice by intestinal 3-D imaging. 3-D intestinal imaging of reporter mice using optical tissue clearing enabled us to evaluate both detailed intestinal morphologies and cell numbers, villus length and crypt depth in the same samples. In disease mouse model of lipopolysaccharide (LPS)-injected mice, the results of 3-D imaging using tissue optical clearing in this study was consistent with those of 2-D imaging in previous reports and could added the new data of intestinal morphology. In analysis of incretin-producing cells of reporter mice, we could elucidate the number, the percentage, and the localization of incretin-producing cells in intestine and the difference of those between L cells and K cells. Thus, we established a novel method of intestinal analysis using tissue optical clearing and 3-D imaging. 3-D evaluation of intestine enabled us to clarify not only detailed intestinal morphology but also the precise number and localization of IECs and incretin-producing cells in the same samples

    Attenuated secretion of glucose-dependent insulinotropic polypeptide (GIP) does not alleviate hyperphagic obesity and insulin resistance in ob/ob mice

    Get PDF
    Objective: Glucose-dependent insulinotropic polypeptide (GIP) is released during meals and promotes nutrient uptake and storage. GIP receptor knockout mice are protected from diet induced weight gain and thus GIP antagonists have been proposed as a treatment for obesity. In this study, we assessed the role of GIP in hyperphagia induced obesity and metabolic abnormalities in leptin deficient (Lepob/ob) mice. Methods: We crossbred GIP-GFP knock-in homozygous mice (GIPgfp/gfp) that have complete GIP knockout, and mice heterozygous for the ob mutation (Lepob/+) mice to generate Lepob/+/GIP+/+, Lepob/ob/GIP+/+, and Lepob/ob/GIPgfp/gfp mice. Male animals were weighed weekly and both oral glucose and insulin tolerance testing were performed to assess glucose homeostasis and circulating profiles of GIP and insulin. Body composition was evaluated by computerized tomography (CT) scan and analyses of indirect calorimetry and locomotor activity were performed. Results: Postprandial GIP levels were markedly elevated in Lepob/ob/GIP+/+ mice compared to Lepob/+/GIP+/+ controls and were undetectable in Lepob/ob/GIPgfp/gfp mice. Insulin levels were equivalently elevated in both Lepob/ob/GIP+/+ and Lepob/ob/GIPgfp/gfp mice compared to controls at 8 weeks of age but the hyperinsulinemia was marginally reduced in Lepob/ob/GIPgfp/gfp by 21 weeks, in association with amelioration of glucose intolerance. Both Lepob/ob/GIP+/+ and Lepob/ob/GIPgfp/gfp mice remained equivalently insulin resistant. Body weight gain and subcutaneous and visceral fat volume of both Lepob/ob/GIP+/+ and Lepob/ob/GIPgfp/gfp mice were significantly higher than that of Lepob/+/GIP+/+ mice, while no significant differences were seen between Lepob/ob/GIP+/+ and Lepob/ob/GIPgfp/gfp mice. Locomotor activity and energy expenditure were decreased in both Lepob/ob/GIP+/+ and Lepob/ob/GIPgfp/gfp mice compared to control Lepob/+/GIP+/+ mice, while no significant differences were seen between Lepob/ob/GIP+/+ and Lepob/ob/GIPgfp/gfp mice. There was no significant difference in fat oxidation among the three groups. Fat content in liver was significantly lower in Lepob/ob/GIPgfp/gfp compared to Lepob/ob/GIP+/+ mice, while that of control Lepob/+/GIP+/+ mice was the lowest. Conclusions: Our results indicate that GIP knockout does not prevent excess weight gain and metabolic derangement in hyperphagic leptin deficient mice

    Glucose-dependent insulinotropic polypeptide deficiency reduced fat accumulation and insulin resistance, but deteriorated bone loss in ovariectomized mice

    Get PDF
    Given the established roles of glucose‐dependent insulinotropic polypeptide (GIP) in promoting fat storage and bone formation, we assessed the contribution of GIP to obesity and osteopenia in ovariectomized mice with a gene encoding green fluorescent protein (GFP) inserted into the GIP locus, in which GIP was either reduced (GIPgfp/+) or absent (GIPgfp/gfp). In GIPgfp/gfp mice, weight gain, subcutaneous and visceral fat mass were reduced, and glucose intolerance was improved compared with wild‐type mice with the same magnitude of insulin responses. Cancellous bone mineral density and bone cortical thickness were reduced in GIPgfp/gfp mice compared with wild‐type mice. In GIPgfp/+ mice, weight gain, glucose intolerance and cancellous bone mineral density were not different from that of wild‐type mice. These results indicate that the total elimination of GIP ameliorates weight gain and adiposity in ovariectomized mice, but it enhances osteopenia, particularly in cancellous bone by partly suppressing bone formation
    corecore